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Abstract
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and workers’ employment. We find that flood risk reduced U.S. aggregate output by
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1 Introduction

Floods are the most frequent natural disasters in many countries. In recent decades, flood
events have become increasingly common, and the risk of floods has risen due to the in-
tensifying water cycles and sea level rise associated with climate change. For example, the
Federal Emergency Management Agency (FEMA) reported that in 2018, about 13 million
Americans resided within a 100-year flood zone in the U.S. As global warming persists, the
floodplains in the U.S. are projected to expand by approximately 45% by the end of this
century (AECOM, 2013). In this paper, we explore the effects of increasing flood risk on
the economy by examining the responses of firms and workers. Utilizing data from the U.S.,
we study how flood risk and flood events influence firms’ location decisions and workers’
employment. Additionally, we quantify the impact of flood risk on aggregate output.

While there is existing literature on the economic impact of floods, the majority of studies
have concentrated on actual flood events, and some recent research examines the effect of
flood risk on housing prices (e.g., Hino and Burke, 2020). However, there are few studies
exploring how increasing flood risk influences firm entry and employment, partly due to the
absence of suitable data. In this paper, we address this gap by employing digitized national
flood risk data over an extended period and linking it with county-level and ZIP-code-level
information on firms’ entry, employment, and other outcomes between 1998 and 2018.

Using a panel data regression design that controls for county fixed effects, year fixed
effects, and various confounding factors, we present two primary empirical findings. First,
increased flood risk has a substantial negative impact on firm entry, employment, and output
in the long run. Specifically, a one-standard-deviation increase in flood risk during the two-
decade study period reduces firm entry by 1.7%, employment by 2.0%, and real GDP by
2.8%. Although the impact on population size is also negative, its magnitude (1.3%) is
smaller than that on employment. Moreover, firm exits decrease with increased flood risk,
indicating reduced business dynamism in a hazardous environment. Second, in contrast to
the long-run effects of increased flood risk, yearly flood events have a limited impact on firm
entry and employment in the short run but diminish real GDP, consistent with the fact that
actual floods affect the productivity of existing firms. Specifically, a one-standard-deviation
increase in the share of flooded areas reduces real GDP in the same year by 0.2%.

A crucial empirical challenge is that the flood risk updates using FEMA maps may be
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subject to endogeneity concerns and measurement errors. Some of the data used in FEMA
modeling are outdated or inaccurate (Kousky, 2018). Additionally, since these FEMA maps
are used to rate national flood insurance policies, FEMA map updates are influenced by map
revision requests or other economic considerations (Flavelle et al., 2020). For our analysis, we
assume that these risk measures are what firms and workers have observed and, therefore,
affect their decisions. To address the potential measurement and identification concerns,
we conduct three robustness checks. First, we employ a cross-fit partialing-out LASSO-
IV approach to select the best predictors of flood risk changes, choosing among geo-climatic
variables, the average changes in flood risk in the rest of the state, and their interactions. We
demonstrate that our LASSO-IV estimates are comparable in magnitude to those obtained
from the fixed effect model. Second, our findings remain robust when using ZIP-code-level
data that exploit finer spatial variations. Finally, we construct an alternative measure of flood
risk updates using scientific model-based data from First Street Foundation, which is less
affected by political pressures, insurance concerns, and other local economic considerations.
Using this alternative measure of flood risk, we obtain similar regression results.

Motivated by our reduced-form findings, we develop a spatial equilibrium model featuring
firm entry (Krugman, 1980) and workers’ location choices (McFadden, 1978) to reveal the
aggregate impact of flood risk. In our model, firms and workers make long-run adjustments in
anticipation of flood risk: firms decide whether to enter a locality to produce and serve local
consumers, while workers determine their labor supply and consider relocation. Realized
floods have short-run effects by influencing firms’ average productivity and workers’ average
amenities for a given locality. The equilibrium wage connects the decisions of firms and
workers. Our model highlights three channels through which flood risk affects the economy.
The first is a direct damage channel that increases with higher flood risk. The second is an
employment channel, where flood risk changes workers’ location choices and reduces labor
supply due to lower real wages. The third is a love-of-variety channel, illustrated by the
declining number of firms as flood risk increases.

We calibrate our model by targeting the responses of employment and population to
flood risk through indirect inference. For the non-targeted moments (output, firm entry, and
firm exit), our model-generated responses to flood risk align with those based on micro data.
This consistency indicates that our model captures essential forces in the economy.

Using our model, we conduct three sets of counterfactual analyses. First, we examine the
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aggregate impact of flood risk on the U.S. economy. We find that in 2018, flood risk caused
a 0.53% decline in aggregate output, of which 0.12% was due to the direct damage channel,
0.33% was due to the employment channel, and 0.08% was due to the variety channel. The
latter two have not been much studied by the literature on natural disasters. Second, we
study the distributional impact across regions. The average decline masks wide regional
variation, as the loss of output in the top 5% counties in the flood risk distribution (in areas
such as Cape May in New Jersey) was as high as 9–16% of county-level output. Third, we
apply our model to a future scenario in which the share of properties with flood risk increases
by 4.5% between 2020 and 2050 (First-Street-Foundation, 2018) and find that this increase
would cause a 0.13% decline in aggregate output. Once again, underlying this impact, the
reduced employment in long-run adjustments of floods plays a more crucial role than direct
damages, a finding that has not been emphasized by the existing literature.

Finally, we examine various extensions of our model, such as assuming that establishing
a new firm necessitates a combination of labor and final goods, incorporating cross-regional
trade flows, considering both land and capital in firm production, and allowing for firm
productivity heterogeneity (Melitz, 2003). Most of these extensions anticipate a marginally
greater impact of flood risk on the economy, and the relatively small differences in magni-
tudes underscore the quantitative significance of the economic forces within our parsimonious
baseline model.

Our study contributes to the growing literature on the quantitative effects of climate
change on spatial economies (e.g., Costinot, Donaldson and Smith, 2016; Alvarez and Rossi-
Hansberg, 2021; Castro-Vincenzi, 2023).1 Bilal and Rossi-Hansberg (2023) and Rudik et al.
(2022) incorporate forward-looking migration in dynamic spatial equilibrium models to assess
the impacts of extreme temperature and storms. Leduc and Wilson (2023) offer estimates
on the long run adjustments to extreme temperatures in the US using a panel distributed lag
approach. Our study is particularly related to two previous studies on the aggregate effects
of floods. Desmet et al. (2021) evaluate the economic cost of coastal flooding using global
data and emphasize the role of migration and investment in local technology. Balboni (2019)
study the misallocation of infrastructure in the presence of coastal flooding driven by the risk
of sea-level changes. While the previous literature has primarily focused on coastal flooding

1There is also a large body of literature that develops macro models to evaluate the impact of climate
change on the national level (e.g., Acemoglu et al., 2012; Golosov et al., 2014; Barrage, 2020; Rudik, 2020;
Fried, 2021; Nath, 2022).
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due to sea-level rise, we leverage a new data source (historic and recent maps of flood zone
designation). This allows our empirical and quantitative analysis to incorporate overall flood
risk, and we investigate the production damage of floods rather than reduced land supply due
to coastal sea level rise. Second, we reconcile the quantitative analysis with our reduced-form
evidence, which highlights that firms’ (and workers’) responses to flood risk differ from their
responses to actual floods. Another relevant study by Lin, McDermott and Michaels (2021)
finds increasing residential housing construction due to urban agglomerations within a 10km
radius of the US Atlantic and Gulf coasts, areas that were already prone to flooding during
the 20th century. Our research complements this study by focusing on national changes in
flood risk and specifically explores the productivity damage caused by the increase in flood
risk, utilizing firm, output, and employment data.

Our micro-level evidence is based on spatially granular panel data on flood risk. Existing
research on flood risk focuses on housing price effects. For example, using the same historic
flood risk data as ours, Hino and Burke (2020) demonstrate that increased flood risk reduces
property values by 1–2%. Wagner (2022) uses recent flood designation map and flood insur-
ance data to study optimal policy in the natural disaster insurance market. Using household
surveys to elicit flood risk perceptions, Mulder (2021) examines the welfare effect of improv-
ing the accuracy of the flood risk map, while Bakkensen and Barrage (2021) study residential
sorting based on flood risk beliefs and the associated implications for coastal housing prices.
Although we do not explicitly model housing, the housing price effect can be interpreted as
a change in amenity in our model.2

Our study is also related to a growing empirical literature on the economic consequences
of natural disasters, particularly those closely related to economic growth (e.g., Bansal and
Ochoa, 2011; Dell, Jones and Olken, 2012), as reviewed by Dell, Jones and Olken (2014).3

Our work is particularly related to Kocornik-Mina et al. (2020), which uses satellite nightlight
data to evaluate the impact of large-scale floods across global cities. Our findings on flood
events are consistent with theirs: flood events reduce output, but their impact does not last

2Our estimate is also comparable to theirs. Since housing prices can be interpreted as the present value
of housing services and housing expenditures account for 30% of total consumers’ expenditures (Serrato and
Zidar, 2016), Hino and Burke (2020)’s estimate implies that flood risk reduces workers’ utility by 0.3–0.6%
through housing damage, which is similar to our calibrated amenity loss of 0.2%.

3Recent studies include Gallagher (2014), Hsiang and Jina (2014), Burke, Hsiang and Miguel (2015),
Deryugina (2017), Hsiang et al. (2017), Bakkensen and Barrage (2018), Tran and Wilson (2021), and Nath,
Ramey and Klenow (2023), among others.
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long, suggesting a fast recovery. In contrast, we demonstrate that flood risk can have long-
run consequences, and the long-run impact can be more severe than the short-run impact, as
it changes firms’ and workers’ behavior. In addition to providing reduced-form evidence, our
study quantifies the importance of considering both long-run adjustment effects and direct
damages in assessing the aggregate consequences of natural disasters.

This paper is structured as follows. Section 2 presents our data and measurement, while
Section 3 provides the reduced-form evidence that leads to the model developed in Section
4. Section 5 applies the model to the data, and Section 6 presents counterfactual exercises
to reveal the aggregate and distributional effects of flood risk. Section 7 concludes.

2 Data

Flood Risk. We use two major sources of data on flood risk. Our first source is FEMA’s
historical and current designation maps of Special Flood Hazard Zones. The maps for histor-
ical flood zone designations, Q3, correspond to FEMA’s Flood Insurance Rate Map in 1998.
These maps assign flood zone designations at the polygon level and are used to determine
national flood insurance premiums. The Special Flood Hazard Zones identified from these
maps represent areas that have at least a 1% probability of being inundated by a flood event
in any given year. In our analysis, we consider areas in Special Flood Hazard Zones as the
FEMA floodplain (areas with flood risk). Since FEMA’s map modernization process in the
early 2000s, there have been numerous revisions to FEMA’s flood risk designations, based
on new flood data and updated modeling methods. To take advantage of these changes, we
also obtain the current floodplain designation maps from FEMA’s National Flood Hazard
Layer (NFHL), which are for the year 2018.4

We use map layers of FEMA’s flood zone designations in 1998 or 2018 to calculate the
proportion of land areas in FEMA’s flood zones for each county-level and ZIP-code-level
tabulation area in either 1998 or 2018.5 For our baseline analysis, We use the proportion of
areas within flood zones as the measure of flood risk. Many counties experienced a significant
increase in flood risk during our sample period. In Figure 1, we plot the change in flood risk

4FEMA determines flood risk designation based on factors such as building construction, geography,
precipitation patterns, etc.

5To minimize measurement errors, we exclude outliers in our analysis.
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from 1998 to 2018 at the county level. The figure shows that many counties experienced
a significant increase in flood risk during our sample period. On average, the proportion
of land areas in flood zones increased by 6 percentage points, with a 19-percentage-point
increase in the 90th percentile across the distribution of county-level flood risk changes.

Figure 1: Change in Flood Risk, County-Level, 1998-2018

Notes: Flood risk at the county level is measured by the share of land areas within the 100-year floodplain. The map
illustrates the changes in the proportion of land within the 100-year floodplain between 1998 and 2018 for each county.
Blank areas on the map indicate regions without flood map coverage based on FEMA maps accessed in 2018.

A significant challenge in using FEMA maps to construct measures of flood risk updates,
as stated in the introduction, involves potential endogeneity concerns and measurement
errors (Pralle, 2019).6 To tackle these identification challenges and enhance the confidence
in the robustness of our empirical results, we will take a LASSO-IV approach below to select
geo-climatic conditions that best predict changes in flood risk. This approach allows for
nonlinear interactions between geo-climatic variables while reducing researchers’ discretion
in the first-stage selection process.

Another approach we take to address the endogeneity of FEMA map revisions is to
construct an alternative measure of flood risk update. We utilize a second data source for

6For example, since FEMA’s map modernization process in the early 2000s, FEMA map revisions are
influenced by Letter of Map Amendment (LOMA) and Letter of Map Revision (LOMR) requests from
individuals and and communities.
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flood risk updates in 2018, based on scientifically derived flood-model predictions from First
Street Foundation. The publicly available, county-level flood risk data from First Street
Foundation provides the percentage of properties within the 100-year floodplain in 2018.
We use FEMA Q3 and satellite data from the Global Human Settlement Layers (GHSL) to
construct the corresponding measure in 1998. In Figure A.2, we plot the change in flood
risk from 1998 to 2018 at the county level, measured as the change in the percentage of
properties within the 100-year floodplain in 2018. The flood risk variations constructed
using the historic FEMA map in 1998 and the recent layer from First Street Foundation in
2018 reflect substantial flood risk increases in both inland and coastal counties.

First Street Foundation does not have a historic flood risk map for 1998. In 1998,
FEMA flood zone designation is the primary sources of flood risk information for firms and
households, since more accurate and scientific flood risk maps are rare at the time. For
the purpose of our analysis, flood risk perception is the primary factor affecting firms’ and
households’ decision making process. For these reasons, we use FEMA maps in 1998 as the
historic flood map providing flood risk information in 1998.

Flood Events. Consistent with the prior literature (e.g., Kocornik-Mina et al., 2020), we
obtained our spatial data on actual floods from the Dartmouth Flood Observatory (DFO).
These data document the frequency and intensity of flood events worldwide and have been
accessible from 1985 to the present.

Firm and Labor Outcomes. Our study focuses on how both firms and workers respond
to the events under investigation. To this end, we obtained the county-level numbers of
establishment entrants and exits for each year of interest from the U.S. Census’s Business
Dynamics Statistics. In our empirical and quantitative analyses, we treat each establishment
as a firm due to its status as the fundamental production unit in the available data.7 On
the worker side, we acquired employment data from the U.S. Census’s Business Dynamics
Statistics and prime-age population data from the Census series. Finally, we used county-
level real GDP data provided by the Bureau for Economic Analysis. We present the summary
statistics for these variables in Panel A of Appendix Table A.1.8

7Differentiating between multi-establishment and single-establishment firms is not the primary focus
of our research, and our data limitations prevent us from doing so. Furthermore, accounting for multi-
establishments within a firm would introduce additional complexities, such as determining the firm’s location
when its establishments are situated in different regions.

8Throughout this paper, employment consists of full and part-time paid employees. Population refers to
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To assess economic outcomes at the ZIP code level, we used the U.S. Census’s ZIP
Codes Business Patterns (ZBP) data, which encompasses measurements of the number of
establishments, employment, and payrolls. However, measurements for population and firm
exits are not included in the ZBP at the ZIP code level.

Control Variables. Factors beyond flood risk, such as local demographic and economic
circumstances can also impact county-level changes in economic performance. As a result,
changes in firm dynamics, employment, and total output could be a result of these factors.
To ensure that the relationship we are interested in is not influenced by additional county-
level characteristics, we incorporate a set of county-level controls into our empirical analysis.
Following Autor, Dorn and Hanson (2013) in creating the county-level controls, we control
for the share of female labor, the manufacturing share of employment, and population den-
sity, and China’s import penetration ratio. A summary of these controls can be found in
Appendix Table A.1. In the change-on-change specification, we include the full set of con-
trols including the changes in manufacturing share of employment, the changes in female
share, the changes in China import penetration,9 the changes in population density10 and
the changes in cumulative flood share.

3 Reduced-form Evidence

This section presents reduced-form results on the effects of flood risk and actual flood events.
We begin by examining the influence of flood risk on firms and employment, which is a novel
contribution to the literature. We do so by presenting motivational evidence (Section 3.1)
and results of a formal empirical analysis (Section 3.2). In Section 3.3, we provide our

“prime age" population between 15 to 64 years.
9The study by Autor, Dorn and Hanson (2021) reveals that China’s import penetration ratio in the

U.S. experienced rapid growth from 1990 to 2010 before plateauing in 2010. This enables us to directly
utilize the China import penetration ratio from the 1990–2010 period, as constructed by Autor, Dorn and
Hanson (2013), to account for the influence of exposure to China’s trade shocks. To avoid endogeneity issues,
we construct the China import penetration ratio based on Chinese imports by other high-income countries
(Australia, Denmark, Finland, Germany, Japan, New Zealand, Spain, and Switzerland). The changes in
China import penetration is defined as changes in Chinese import exposure per worker in a region, where
regional imports are calculated according to its national industry employment share.

10Given the concern that the share of female labor and the manufacturing share of employment may
be endogenous outcomes, we find that our regression results remain quantitatively similar when dropping
these controls. In the regressions of using log population as the dependent variable, we do not control for
population density to avoid collinearity (we instead control for initial population).
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estimate of the impact of actual flood events. This helps us regulate the model parameters
governing direct damages caused by floods.

3.1 Impact of Flood Risk: Motivation and Research Design

To provide motivational evidence, we analyze how changes in flood risk are related to changes
in firm entry and employment in the raw data. Figure 2a displays county-level changes in the
number of firm entrants between 1998 and 2018 against county-level changes in flood risk.
The scatter plot reveals a significant negative correlation. Similarly, Figure 2b indicates a
negative correlation between flood risk and employment changes. In the raw data, a one-
standard-deviation (10-percentage-point) increase in the share of land in FEMA’s flood zones
is linked to a decline of 3.3% in firm entry and a decline of 2.7% in employment. Moreover,
these figures reveal that counties that experienced the largest increases in flood risk are
located near rivers, lakes, or oceans.

Figure 2: Correlations in the Raw Data

(a) Firm entry (b) Employment

Notes: The counties that experienced the highest increase in flood risk are highlighted in red if they are coastal (e.g.,
Marion County, FL), and in blue, if they are located close to a river or lake (e.g. Sharkey County, MS).

The correlations found in the raw data suggest that increased flood risk discourages firm
entry and employment. However, these relationships may be influenced by other county-
level characteristics. To examine the causal impact of flood risk increase on firm entry,
employment, and other outcomes, we employ a fixed effects framework that controls for
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various confounding factors. Our baseline empirical specification is as follows:

log Yi,t = α + β1FloodRiski,t + σi + γs,t + ζXi,t + β2ActualF loodi,t + εi,t. (1)

Here, log Yi,t represents the logarithm of the number of firm entrants (or other outcomes of
interest) in locality i (county or ZIP code) and year t. Our primary independent variable,
FloodRiski,t, indicates the percentage of land area within FEMA’s special flood zones in
locality i and year t. Due to data limitations and as our interest lies in the long-run effects
of flood risk, we focus on two years’ outcomes, t = 1998 and t = 2018.

The locality (county or ZIP code) fixed effects, σi, absorb any time-invariant locality
characteristics such as industry composition that may be correlated with flood risk and
outcomes. State-by-year fixed effects, γs,t, capture the statewide economic growth or business
cycle fluctuations. Additionally, the vector Xi,t contains a set of county-level demographic
and economic factors, as described in Section 2, that capture other factors that may confound
the relationship between flood risk and county-level outcomes. To distinguish the distinct
impacts of flood risk and actual flood events, we also control for ActualF loodi,t, defined
as the cumulative percentage of flooded areas for locality i in year t. Standard errors are
clustered at the locality level.

3.2 Impact of Flood Risk: Empirical Findings

3.2.1 Fixed Effects Estimations

County-level Results. Panel A in Table 1 displays the county-level impact of flood risk
on firm entry, firm exit, employment, population, and real GDP. The regressions in odd
columns control for county fixed effects and state-by-year fixed effects. The regressions in
even columns further control for time-varying county characteristics and the share of actual
flooded areas, due to the concern that actual floods may drive the impact of flood risk. We
find that the estimated impact of flood risk remains stable, regardless of whether we control
for the occurrence of actual floods.
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Table 1: Impact of Long-run Change in Flood Risk: Fixed Effects Estimates

Panel A: County Level

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

log(Entry) log(Exit) log(Employment) log(Population) log(Output)a

Flood Risk -0.175** -0.169** -0.128* -0.111 -0.227*** -0.199*** -0.116*** -0.130*** -0.288*** -0.278***
(0.082) (0.080) (0.073) (0.074) (0.055) (0.054) (0.042) (0.042) (0.071) (0.070)

Observations 5072 5072 5072 5072 5072 5072 5072 5072 5072 5072
County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
State×Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Other Controls Yes Yes Yes Yes Yes
Flood Share Yes Yes Yes Yes Yes
ymean 4.11 4.11 4.04 4.04 9.11 9.11 9.98 9.98 13.80 13.80

Panel B: ZIP Code Level

(1) (2) (3) (4) (5) (6)
log(Establishment) log(Employment) log(Payroll)

Flood Risk -0.233*** -0.203*** -0.210*** -0.250*** -0.276*** -0.226***
(0.039) (0.039) (0.066) (0.066) (0.072) (0.073)

Observations 41032 41032 41032 41032 41032 41032
ZIP Code FE Yes Yes Yes Yes Yes Yes
State×YearFE Yes Yes Yes Yes Yes Yes
Other Controls Yes Yes Yes
Flood Share Yes Yes Yes
ymean 4.44 4.44 6.61 6.61 9.96 9.96

Notes: Due to data availability, we utilize county-level GDP in 2001 instead of 1998 for Columns (9) and (10), as the BEA county-level GDP data
starts from 2001. The primary independent variable, Flood Riski,t, signifies the percentage of land area within FEMA’s special flood zones in locality
i and year t. We are interested in the long-run impact of flood risk, so we focus on t being 1998 and 2018. All regressions account for locality fixed
effects, state-by-year fixed effects, and a comprehensive set of demographic and economic controls. Data on firm entry, exit, and population are not
available at the ZIP Code level. Standard errors are clustered at the locality level (county or ZIP code). Significance levels: * 10%, ** 5%, *** 1%.
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We highlight three empirical findings. First, Column (2) demonstrates that increased
flood risk had a negative impact on firm entry. In terms of magnitude, a standard deviation
(10-percentage-point) increase in flood risk between 1998 and 2018 reduced the number of
firm entrants in 2018 by 1.7%. A county whose flood risk increase was in the 90th percentile
among all counties would experience, on average, a reduction of 3.3% in firm entry. Column
(4) shows that accompanying the decline in firm entry, firm exits also decreased with flood
risk, although to a lesser extent than the effect on firm entry. Even though natural disasters
are typically associated with more establishment closures (as we show in Section 3.3), the
decrease in firm exits likely reflects the impact of fewer firms and declining firm dynamism.

Second, Columns (6) and (8) together indicate that an increase in flood risk signifi-
cantly reduced employment and, to a lesser extent, population. Specifically, a one-standard-
deviation (10-percentage-point) increase in flood risk reduced population by 1.3% and em-
ployment by 2.0%. The population change primarily reflects individuals’ relocation, given
that we control actual floods and focus on prime-age population. Our finding on the pop-
ulation decline in response to flood risk is consistent with the increasing displacement of
people due to climate changes as reported by the United Nations,11 and migration has been
recognized by the literature as essential in understanding the long-run mitigation of natural
disasters (e.g., Desmet et al., 2021). Furthermore, our results indicate that adjustments
in employment to flood risk are more significant than population adjustments, suggesting
that the remaining population may also modify their employment choices. Another possible
explanation could be the increased separation between the locations where workers live and
where they work (Monte, Redding and Rossi-Hansberg, 2018). Figure A.1 presents the bi-
lateral commuting data, indicating that the relative number of workers who work within a
county compared to workers who reside within the county does not appear to be influenced
by flood risk. This suggests that commuting is unlikely to be the primary factor driving
more significant responses in employment compared to population responses, which would
otherwise imply a negative impact of flood risk on the relative number of workers who work
within a county relative to workers who reside within the same county. Guided by these
empirical findings, we will embed migration and endogenous labor supply into our model.

Finally, along with the decline in firm dynamism and employment, Column (10) shows
11See the report by the United Nations High Commissioner for Refugees: https://www.unhcr.org/what-

we-do/build-better-futures/environment-disasters-and-climate-change/climate-change-and. A recent book,
Bittle (2023), also provides numerous examples of climate migration in the United States.
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that real GDP decreased by 2.8% with a one-standard-deviation increase in flood risk, im-
plying a sizable impact on aggregate output.

ZIP-Code-Level Results. Next, we use ZIP-code-level data to leverage finer spatial vari-
ations in the changes of flood risk status and firm-level outcomes. Since information on
firm entry, exit, and real GDP is unavailable at the ZIP code level, we instead focus on two
related variables: the number of establishments and annual payrolls. We also omit results
regarding population due to the lack of data at the ZIP-code level. We use similar specifica-
tions as before, controlling for ZIP-code-level fixed effects, state-by-year fixed effects, control
variables, and actual floods. Panel B of Table 1 shows that the impact of flood risk is similar
in magnitude to the county-level results when focusing on finer geographic variations. An
increase in flood risk significantly decreased the number of firms, total employment, and
total payrolls.

Robustness Checks. It is worth noting that a subset of counties is not included in the
FEMA historic Q3 maps, and therefore, flood risk information is not available for them. To
account for this, we treat the flood risk in these unreported areas as zero since firms and
individuals do not receive any risk signal from FEMA. Alternatively, Appendix Table A.2
uses the counties with available FEMA flood maps for 1998 and 2018 to perform our baseline
regression (1). Our findings show that the estimated impact of flood risk is qualitatively
similar to our baseline results, with slightly larger magnitudes. To err on the side of caution,
we use our baseline estimates to calibrate the quantitative model.

To further validate our results, we also conduct a placebo test. Instead of using the
outcomes from 1998 and 2018, we investigate the impact of flood risk on firm dynamics
and other county-level outcomes in the preceding period, 1990 and 1998. Intuitively, if the
adverse impact of flood risk on economic outcomes during our sample period is influenced
by other omitted local economic characteristics, this negative impact may have already
occurred in earlier periods. As demonstrated in Appendix Table A.3, we find that this is not
the case:12 the estimates from the placebo tests are considerably smaller in magnitude and
not significant, indicating that current period flood risk do not correlate with county-level
outcomes in prior years. Additionally, given the concern that the changes in manufacturing

12We do not analyze real GDP in the placebo test because county-level GDP data were not available
before 1998.
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employment share and female share could be endogenous outcomes, we show in Table A.4
that our results remain similar when not including these controls. Our main results are
robust when clustering at the state level, allowing for spatial correlation in the error terms,
as shown in Table A.5.

3.2.2 LASSO-IV Estimation

In our baseline analysis, the variation in flood risk is constructed using updates based on the
FEMA Flood Insurance Rate Maps (FIRM). Although FEMA flood risk ratings are directly
observed by firms and workers, there are several potential measurement and endogeneity
concerns associated with using FEMA FIRM map updates. Firstly, one might be concerned
that the significant wave of FEMA map updates in the 2000s was subject to requests for
map amendments or FEMA budgetary considerations (Pralle, 2019). Both of these factors
could be driven by local economic considerations. Secondly, FEMA risk measures also suffer
from measurement errors due to the utilization of outdated risk models. To address these
empirical challenges, we take two approaches. First, we employ a LASSO IV approach, as
specified in this subsection. Next, in Section 3.2.3, we construct an alternative measure of
flood risk updates using data from First Street Foundation.

To exploit variation in flood risk updates arising from differences in geo-climatic features
across counties, we begin with a set of variables13 constructed for the initial year, 1998,
using the climate reanalysis data ERA5-Land. The relationship between flood risk and geo-
climatic variables is complex and potentially highly nonlinear: for example, soil temperature
and evaporation rate may interact to affect flood risk of a region. These geo-climatic variables
may also have heterogeneous impacts on a county’s flood risk depending on the aggregate
trend, which we proxy by the average change in flood risk in the rest of the state. To allow for
high-dimensional interactions between climatic variables and to minimize discretion, we take
a LASSO regression approach to select a set of predictors, choosing among the geo-climatic
variables, the average changes in flood risk in the rest of the state, and their interactions. We
then adopt a LASSO-IV approach as an alternative empirical strategy to validate our OLS
estimates (Chernozhukov et al., 2018; Beraja et al., 2023). We control for the cumulative
shares of flooded areas between 1998–2018 for each county in case these geo-climatic features

13These variables include air temperature, soil temperature, precipitation, evaporation rate, and vegeta-
tion coverage index.
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Table 2: Impact of Long-run Change in Flood Risk: Change-on-Change Estimates

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

∆log(Entry) ∆log(Exit) ∆log(Employment) ∆log(Population) ∆log(Output)

∆Flood Risk -0.169** -0.214** -0.111 -0.124 -0.199*** -0.252*** -0.130*** -0.143*** -0.278*** -0.338***
(0.080) (0.089) (0.074) (0.082) (0.054) (0.060) (0.042) (0.044) (0.072) (0.072)

Observations 2536 2536 2536 2536 2536 2536 2536 2536 2536 2536
State FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Other Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Cumulative Flood Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Specification OLS LASSO-IV OLS LASSO-IV OLS LASSO-IV OLS LASSO-IV OLS LASSO-IV

Notes: Outcome variables are expressed in log changes. The primary independent variable, ∆Flood Riski,
denotes changes in the percentage of land area within FEMA’s special flood zones in locality i between the
years 1998 and 2018. "LASSO-IV" indicates our cross-fit partialing-out LASSO instrumental variable approach,
employing county-level geo-climatic variables, average changes in flood risk in the rest of the state, and their
interactions (selected by LASSO) as instruments. All regressions account for state fixed effects, the cumulative
shares of actual flooded areas between 1998–2018, and a comprehensive set of demographic and economic
controls. (Controls are included as changes.) Significance levels: * 10%, ** 5%, *** 1%.

are correlated with actual floods.

Table 2 presents the results from the LASSO-IV regressions. Table A.6 presents the
selected first-stage geo-climatic predictors and their weights. For example, lower evaporation
is associated with higher rates of soil saturation, whereas higher temperatures may exacerbate
water runoff, thus increasing localized flooding risk. Overall, we find that the LASSO-IV
estimates are comparable in magnitude to our previous fixed effects estimates. According
to these estimates, a one-standard-deviation increase in flood risk reduced county-level firm
entry by 2.1%, employment by 2.5%, and real GDP by 3.4%. Thus, although the flood risk
measures likely reflect some unobserved factors, there does not appear to be a significant
bias in our fixed effects estimates.

3.2.3 Alternative Measure of Flood Risk Updates

As discussed above, flood risk updates constructed using FEMA maps may be subject to en-
dogeneity concerns and measurement errors (Pralle, 2019). In this subsection, we perform ad-
ditional robustness checks using an alternative measure of flood risk updates, based on scien-
tific flood-model-derived predictions from First Street Foundation (First-Street-Foundation,
2018). First Street Foundation estimates flood risk using peer-reviewed flood risk models,
which mitigates concerns regarding measurement errors. Flood risk updates constructed
using First Street Foundation’s scientific model-based flood risk maps in 2018 are also less
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affected by political pressures and other local economic considerations. To the extent that
the flood risk areas identified by First Street Foundation are less impacted by FEMA’s
mandatory flood insurance, we also interpret results under this alternative measure of flood
risk update as being less affected by insurance concerns.

We construct an alternative measure of flood risk updates using Q3, FEMA’s historic
map from 1998,14 and First Street Foundation flood risk map in 2018. Specifically, for each
county, we calculate the change in the percentage of properties within the 100-year floodplain
between 1998 and 2018. From First Street Foundation, we directly obtain publicly available,
county-level flood risk measures in terms of the percentage of properties within the 100-year
floodplain. We then construct the corresponding measure for 1998. Ideally, to calculate
this, we would overlay the historic Q3 flood map with a spatially granular map depicting
the number of properties at the grid level. We obtain the best proxy for the latter using a
250m spatial raster data of population distribution from the GHSL. The GHS-POP data is
estimated using satellite remote sensing methods, informing the distribution, classification,
structure, and density of built-up areas at the grid level.

The results are presented in Table 3. Compared with our baseline results in Table 2, the
point estimates using the alternative, property-weighted measure based on First Street Foun-
dation data in Table 3 are larger. In Appendix Table A.7, we employ the property-weighted
flood risk variation constructed from FEMA FIRM map data in both years and obtain es-
timates similar to those in Table 3. These results suggest that that further considering
economic activities in the flood zones would strengthen our main finding.

3.3 Impact of Flood Events

Our next step is to understand the direct damages of actual floods by examining their impact
on the same outcomes as above. This exercise not only confirms the negative impact of floods,
as shown in recent studies (Kocornik-Mina et al., 2020), but also enables us to calibrate the
parameters that govern the direct damages of floods in the model.

We use annual information on flood events from the Dartmouth Flood Archives and
14FEMA’s historical map from 1998 serves as the most reliable measure of historic flood risk indicators

in the United States during the 1990s. Alternative flood maps from other private or academic sources were
rare in the US during the 1990s. First Street Foundation does not possess a flood risk map for the 1990s.
We are using the first version of the First Street Foundation flood risk maps when it became available.
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Table 3: Impact of Long-run Change in Flood Risk: Property-Weighted Measure from
First Street Foundation

(1) (2) (3) (4) (5)

∆log(Entry) ∆log(Exit) ∆log(Employment) ∆log(Population) ∆log(Output)

∆Flood Risk -0.556*** -0.522*** -0.568*** -0.363*** -0.570***
(0.109) (0.115) (0.082) (0.069) (0.134)

Observations 2817 2817 2817 2817 2817
State FE Yes Yes Yes Yes Yes
Other Controls & FE Yes Yes Yes Yes Yes
Cumulative Flood Yes Yes Yes Yes Yes

Notes: Outcome variables are expressed in log changes. The primary independent variable, ∆Flood Riski, denotes
changes in the percentage of properties within the 100-year floodplain in locality i between the years 1998 and 2018,
determined using the historic Q3 and First Street Foundation data. All regressions account for state fixed effects, the
cumulative shares of actual flooded areas between 1998–2018, and a comprehensive set of demographic and economic
controls. Standard errors are clustered at the county level. Significance levels: * 10%, ** 5%, *** 1%.

estimate the impact of actual floods on economic outcomes in the same year (we also discuss
lagged effects below), similar to Kocornik-Mina et al. (2020). Our specification is as follows:

log Yi,t = α + β1Floodi,t + σi + γs,t + ζXi,t + εi,t. (2)

Here, log Yi,t represents the log number of firm entrants (or other outcomes of interest) in
county i and year t. Our main independent variable, Floodi,t, denotes the percentage of
county areas that are flooded in county i and year t. As before, we control for county
fixed effects (σi), state-by-year fixed effects (γs,t), and the set of county-level demographic
composition and China’s import penetration ratios by year (Xi,t). Since county-level GDP
data, business dynamics data, and flood data are all available for the period 2001–2018, we
use a balanced panel of county-level outcomes over these 18 years for estimation. We cluster
standard errors at the county level.

Table 4 presents the results, and we find that the impact of actual floods is vastly different
from that of flood risk. In particular, actual floods have a negligible impact on firm entry,
firm exit, employment, and population, as shown in Table 4. However, they do reduce real
GDP. As seen in Column (10), a one-standard-deviation increase (0.4) in the share of flooded
areas in a year significantly decreases real GDP by 0.2%. This magnitude is consistent with
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that found in recent literature (e.g., Henderson, Storeygard and Weil, 2012; Kocornik-Mina
et al., 2020). Additionally, we find that the impact is primarily driven by the current year’s
flood shocks, in line with these studies. As indicated in Appendix Table A.8, lagged flood
shocks from the previous year have negligible effects on real GDP losses in the current year.15

Given these findings, the model developed in the next section considers that the impact of
actual floods mainly unfolds through negative productivity impact.

Table 4: Impact of Short-run Actual Floods: Fixed Effects Estimates

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

log(Entry) log(Exit) log(Employment) log(Population) log(Output)

Flood Share 0.002 0.001 0.003 0.003 -0.001 -0.001 0.001*** 0.001*** -0.005*** -0.005***
(0.004) (0.004) (0.004) (0.004) (0.001) (0.001) (0.000) (0.000) (0.002) (0.002)

Observations 49376 49376 49376 49376 49376 49376 49376 49376 49376 49376
County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
State×Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Initial Controls Yes Yes Yes Yes Yes
ymean 4.06 4.06 4.02 4.02 9.02 9.02 9.96 9.96 13.78 13.78

Notes: Outcome variables are expressed in log values. The primary independent variable, Flood Sharei,t, denotes the
percentage of flooded land area in county i during year t. We are interested in the short-run impact of yearly floods,
and the sample period covers 2001–2018. All regressions account for county fixed effects, state-by-year fixed effects, and
a comprehensive set of initial controls with year trends. Standard errors are clustered at the county level. Significance
levels: * 10%, ** 5%, *** 1%.

4 Model

Our reduced-form analysis suggests that increased flood risk has a negative impact on long-
run firm dynamism. Specifically, we observe a significant decrease in firm entry, with firm
exits following to a lesser extent. Moreover, heightened flood risk leads to reduced employ-
ment levels and, to a smaller degree, decreased population. These adverse effects of flood risk
are also evident in a decline in real GDP. In contrast, actual flood events mainly influence
short-run productivity and have only a limited effect on firm and employment adjustments.
Based on these patterns, we develop a model that takes into account firms’ and workers’

15The literature suggests that firms may adjust their beliefs regarding climate-risk exposure based on
climate disasters (e.g., Hong, Karolyi and Scheinkman, 2020; Giglio, Kelly and Stroebel, 2021; Pankratz
and Schiller, 2021). However, due to the absence of data on firms’ beliefs in our study, we are unable to
investigate the phenomenon of belief upgrading. Nevertheless, considering the minimal delayed effects of
flood events, the issue of firms’ belief updating may not be a significant concern for our empirical analysis.
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considerations of flood risk and actual floods in their decision-making processes.

We consider an economy consisting of M regions (indexed by m), where production in
each region follows a model similar to that proposed by Krugman (1980), with free entry
of firms. The total number of individuals is normalized to L̄ = 1, and individuals make
decisions regarding location and labor supply to maximize their utility. We incorporate
flood risk into the model as follows. Let S = {s1, s2, ...} denote the set of possible states of
nature, where each state s is characterized by a probability Pr(s) and a corresponding vector
of flooding events, {ξ1(s), ξ2(s), ..., ξM(s)}, where binary variable ξm(s) ∈ {0, 1} indicates the
occurrence of flooding. Following previous macro models on climate change (e.g., Nordhaus,
1992; Acemoglu et al., 2012; Golosov et al., 2014; Barrage, 2020), we consider actual flood
events to affect firms’ average productivity and workers’ average amenities within each region,
as well as destructing a portion of firms. Prior to the realization of shocks, individuals make
decisions regarding location and labor supply, while firms make decisions regarding entry.
Once shocks occur, production and consumption take place. The timing of the model is
illustrated in Figure 3, and we provide a detailed description of each activity below.

Figure 3: Timing in the Model

Individuals choose locations
and the amount of labor supply

Firms are established remaining firms produce
A fraction of firms exit;

Individuals work and
consume final goods

Before floods
are realized

After floods
are realized

Floods lower
productivity and

cause exits

amenities
Floods lower

4.1 Production

In each region m, a composite final good is produced using differentiated varieties based on
the CES technology:

Ym(s) =

(∫
ω∈Ωm(s)

y(ω, s)
σ−1
σ dω

) σ
σ−1

. (3)
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Here, Ωm(s) represents the set of varieties produced in region m and state s. For the sake of
analytical tractability, we exclude cross-regional trade flows from our baseline model.16 The
parameter σ > 1 denotes the elasticity of substitution across varieties, and the resulting final
good is used for consumption. The price index for the final good is given by:

Pm(s) =

(∫
ω∈Ωm(s)

p(ω, s)1−σdω

) 1
1−σ

, (4)

where p(ω, s) represents the price level of variety ω in state s.

Consistent with Krugman (1980), establishing a firm in region m requires fm units of
labor, and each firm is engaged in monopolistic competition while obtaining a blueprint for
producing a differentiated variety. To produce output, each firm employs ldm(s) units of labor
using a constant-returns-to-scale production technology:

ym(s) = Am(s)ldm(s). (5)

Here, Am(s) denotes the productivity level in state s, which we assume to be Am(s) =

Ām exp(−δξm(s)). The parameter δ governs the extent to which firm productivity levels are
impacted by flooding events. In line with the growth literature (e.g., Atkeson and Burstein,
2010), we assume that an exogenous rate of κ(s) = κ̄ exp(δkξm(s)) of firms exit prior to
production. The parameter κ̄ captures various factors, such as lawsuits or managerial shocks,
that lead to the cessation of firm operations, while δk governs the extent to which a portion
of firms are destructed by floods.

Under monopolistic competition, the optimal price charged by a firm in region m is
σ̃Wm(s)/Am(s), where σ̃ = σ

σ−1
represents the constant mark-up, and Wm(s) denotes the

wage rate in region m. Consequently, the total profits for a firm are:

πm(s) =
1

σ

(
σ̃
Wm(s)

Am(s)

)1−σ

Pm(s)σYm(s) =
Wm(s)ldm(s)

σ − 1
. (6)

The first equality indicates that total profits are a portion 1/σ of total revenues, while the
second equality arises from the cost-to-profit ratio being (σ − 1).

16In Section 6.3.2, we will integrate cross-regional trade into the model and demonstrate that incorporating
trade slightly strengthens the influence of floods. However, despite this effect, the economic forces within
our simplified baseline model still remain the most significant determining factor.
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Firms are established prior to the occurrence of shocks. In equilibrium, free entry implies
that the expected costs of establishing a firm should equal the expected profits of a firm in
each region: ∑

s

Pr(s)Wm(s)fm =
∑
s

Pr(s) (1− κ(s))πm(s). (7)

In the model, we do not consider flood insurance. Since firms are risk-neutral, they will
only purchase insurance if it is priced below the actuarially fair value. Assuming actuarially
fair insurance in the model only reflects the expected flood damages before the occurrence
of flood events and does not affect firm entry decisions. Some evidence indicates that flood
insurance is priced close to fair prices. For instance, Fier, Gatzlaff and Pooser (2014) found
that 80% of policyholders in the National Flood Insurance Program pay the actuarially fair
premium. Additionally, a quantitative study by Fried (2021) estimates that the average price
of residential flood insurance is higher than the actuarially fair value by 0.5%. Finally, it is
worth noting that coverage provided by FEMA’s flood insurance is limited to the repair of
damaged structures and personal properties.17 This coverage does not extend to compen-
sating for the loss of firm productivity related to business interruption or loss of use (NFIP,
2021), which is a significant factor in our model as it affects wages and labor supply in the
presence of heightened flood risk.

4.2 Individuals

We assume that individuals’ utility in region m is:

Um(s) = vmBm(s)

(
cm(s)lm − ψm

l
1+1/φL
m

1 + 1/φL

)
,

s.t. Pm(s)cm(s) ≤ Wm(s).

(8)

All individuals are identical except for heterogeneous location preferences {vm}, which are
distributed according to a Fréchet distribution G(v) = exp(−v−φM ) and are i.i.d. across both
regions and individuals. Location preferences are used in the literature (e.g., McFadden,
1978) to generate labor mobility across regions, as shown below. We consider amenities
Bm(s) = B̄

1/φM
m exp(−ηξm(s)) as proportional adjustments to utility from consumption and

17The maximum limit available for commercial building property coverage is $500,000.
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labor disutility (e.g., Fajgelbaum et al., 2018; Bryan and Morten, 2015). The parameter
η > 0 captures negative amenity shocks caused by floods, which may lead to discomfort and
disorder in public services. cm(s) denotes expenditures per labor on final goods in state s.

Similar to import competition studied in Autor, Dorn and Hanson (2013), we find that
flood risk has a greater impact on employment than on population. This finding suggests
that changes in local employment are not solely due to individuals’ relocation but may also
reflect individuals’ endogenous choices of labor supply. Therefore, instead of assuming one
unit of labor per individual, we introduce a positive labor supply elasticity φL > 0.18 For
analytical tractability, we assume that labor supply lm is determined before shocks occur,
which is consistent with our empirical evidence that employment responses are mainly driven
by flood risk rather than actual floods. One micro-foundation for this assumption is that,
due to labor market frictions, job searches take time and cannot be completed immediately
(Mortensen and Pissarides, 1994; Pissarides, 2000).

Each individual selects its location and labor supply to maximize its expected utility
before shocks are observed, maxm,lm

∑
s Pr(s)Um(s). In equilibrium, the endogenous labor

supply lm and the population share Λm in region m are given by:19

lm =

(∑
s

Pr(s)
Wm(s)

ψmPm(s)

)φL

, (9)

Λm =

(∑
s Pr(s)Bm(s)ψml

1+1/φL
m

)φM
∑

m′

(∑
s Pr(s)ψm′Bm′(s)l

1+1/φL
m′

)φM . (10)

We provide all the proofs in Appendix B.1. Therefore, φL and φM jointly determine how
labor supply per individual and the number of individuals respond to changes in real wages

18Alternatively, we could assume employment and non-employment sectors in each region and allow
individuals to choose between locations and sectors. This alternative setting would yield similar results if
the elasticity of location choices in response to changes in real consumption differs from the elasticity of
sector choices (e.g., Adao, Arkolakis and Esposito, 2018).

19The first-order condition implies that lm =
(∑

s Pr(s)
Bm(s)∑

s Pr(s)Bm(s)
Wm(s)
ψmPm(s)

)φL

. We observe that
Bm(s)∑

s Pr(s)Bm(s) approaches 1 when η is small (in our calibration, η = 0.002). As a result, we consider
Bm(s)∑

s Pr(s)Bm(s) to be equal to 1 in the labor supply expression, which simplifies the analytical solutions.
We have also conducted numerical assessments and found that this simplification has very little impact on
our quantitative findings.
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and amenities across regions. In our quantitative analysis, we calibrate these two parameters
using our reduced-form findings on the region-level responses of population and employment
to shifts in flood risk. The total labor supply in region m is given by Lm = ΛmlmL̄.

Finally, based on individuals’ optimal location and labor supply choices, we can compute
individuals’ welfare by evaluating the average expected utility of individuals nationwide:

∑
m

ΛmE

[∑
s

Pr(s)Um(s)
∣∣∣choose region m

]
= C

∑
m

(∑
s

Pr(s)Bm(s)ψml
1+1/φL
m

)φM
1/φM

(11)
where C = Γ(1−1/φM )

1+φL
is a constant. As demonstrated by equation (11), individuals’ welfare

reflects the amenity damage of floods through Bm(s) and the productivity damage of floods
through changes in real wages, which shape labor supply lm as indicated by equation (9).

4.3 Equilibrium

Let Nm be the number of firm entrants in region m before shocks occur, and let Nm(s) =

Nm(1 − κ(s)) be the number of actively operating firms, reflecting the effects of firm exits.
The market clearing for final goods in region m requires that individuals’ total consumption
equals the total production:

Pm(s)Lmcm(s) = Pm(s)Ym(s). (12)

The labor market clearing in region m requires:

Nm(s)ldm(s) +Nmfm = Lm. (13)

This, combined with equation (7), implies that Nm = Lm
σfm

and ldm(s) ≡ (σ−1)fm
1−κ(s)

.

Below, we define the general equilibrium of our model:

Definition 1 The general equilibrium consists of regional labor supply {Λm, lm} and the
number of firms Nm, and in each state of nature s, individuals’ consumption cm(s), firms’
employees ldm(s), and aggregate price and quantity variables {Pm(s), Ym(s),Wm(s)}. These
variables satisfy:
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(a) before shocks are realized, regional supply of individuals {Λm, lm} is determined by indi-
viduals’ expected utility maximization as given by equations (9) and (10);
(b) before shocks are realized, the number of firms Nm in each region is determined by free-
entry conditions in equation (7);
(c) in state s, firms’ choices of employees ldm(s) are determined by the maximum profits given
by equation (6);
(d) in state s, the quantity Ym(s) clears the goods market for each region, as shown in equa-
tions (12), with Pm(s) as the aggregate price index given by equation (4); and
(e) in state s, wages Wm(s) clear each region’s labor market, as shown in equation (13).

Proposition 1 (Uniqueness of Equilibrium) If
∣∣∣φM (φL+1)
σ−1−φL

∣∣∣ ≤ 1, the equilibrium is unique
if it exists.

Proof: See Appendix B.2. �

Proposition 1 specifies the condition for the uniqueness of the equilibrium, and our calibration
in the quantitative analysis satisfies this condition.

4.4 Main Forces at Work

We now demonstrate how flood risk affects aggregate productivity. Here, rm =
∑

s Pr(s)ξm(s)

represents the probability of a flood shock occurring in region m, which is calculated as the
sum of the product of the probability of each state of nature and the corresponding flood
shock occurrence in that region. In our model, by combining equations (3), (7), and (13),
aggregate output can be expressed as:

Ym(s) =
(
Nm(s)(Am(s)ldm(s))

σ−1
σ

) σ
σ−1 ∝ Am(s)Nm(s)

1
σ−1Lm. (14)

As the real wage per labor is equal to Ym(s)/Lm, we can rearrange labor supply in equation
(9) as given in equation (15):

lm ∝

(∑
s

Pr(s)Am(s)Nm(s)
1

σ−1

)φL

. (15)
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Here, given the “love of variety” feature of final goods, the parameter 1
σ−1

captures the
agglomeration force resulting from more varieties. To simplify our analysis, we focus on
changes in flood risk in a region that accounts for a small share of the national population
and therefore ignore general-equilibrium responses in individuals’ utility in other regions.
The population share in equation (10) is determined by:

Λm ∝

(∑
s

Pr(s)Bm(s)l1+1/φL
m

)φM

. (16)

Finally, by noting that the firm mass Nm(s) ∝ Lm(1 − κ(s)) and the total labor sup-
ply Lm ∝ Λmlm, we can analytically characterize the responses of endogenous variables
{Ym(s), lm,Λm, Nm(s), Lm} to changes in flood risk. Here, we use x̂ = log(x) to denote the
logarithm of variable x.

Proposition 2 (Responses to Changes in Flood Risk) For a small region m, in re-
sponse to a change in flood risk, the changes in labor supply, population share, total employ-
ment, firm count, and average output are:

dl̂m = −φL
δ + 1

σ−1
κ̄δκ + 1

σ−1
φMη

1− 1
σ−1

(φL + (φL + 1)φM)
drm, (17)

dΛ̂m = φM

[
(1 + 1/φL)dl̂m − ηdrm

]
, (18)

dL̂m = dl̂m + dΛ̂m, (19)

dÊNm = dL̂m − κ̄δkdrm, (20)

dÊY m = −δdrm + dL̂m +
1

σ − 1
dÊNm, (21)

where ENm =
∑

s Pr(s)Nm(s) and EYm =
∑

s Pr(s)Ym(s) are the average firm count and
output across states of nature.

Proof: See Appendix B.3. �

Equation (17) illustrates how the labor supply per individual responds to changes in flood
risk. When the probability of flooding is higher, there is larger damage to firms’ productivity,
firm count, and amenity. If the agglomeration force is small such that 1

σ−1
(φL + (φL +

1)φM) < 1, then the labor supply would decrease with higher flood risk. In this sense, our
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model captures the concept of “immobile labor” (Autor, Dorn and Hanson, 2013), as some
individuals may respond to the shock by reducing the labor supply rather than moving to
other regions. Equation (18) shows how higher flood risk induces regional relocation, as it
reduces amenities and real consumption. The change in the region-level total labor supply in
equation (19) includes both the effect of regional relocation and the change in labor supply
per individual.

Equations (20) and (21) demonstrate the production side’s response to increased flood
risk. A reduced labor supply and greater damages to firm count result in fewer firms. The
aggregate output is affected by three factors. First, the direct damage of floods rises with
higher flood risk, which we call the direct damage channel. Second, increased flood risk
leads to lower employment and reduced output, referred to as the employment channel.
As mentioned earlier, employment changes stem from regional relocation (migration) and
adjustments in labor supply per individual. Since output losses in out-migration regions
are generally balanced by output gains in in-migration regions, the aggregate productivity
effects of flood risk through regional labor relocation are relatively small compared to its
local economic impacts, as illustrated in the quantitative analysis below. Finally, our model
includes the love-of-variety channel, where aggregate output also responds to changes in the
number of varieties. This channel is significant for welfare but not reflected in the GDP data
(Broda and Weinstein, 2006).

5 Quantification

In this section, we calibrate our model to match the U.S. counties in 2018. Firstly, we obtain
certain parameters directly from the literature and our data in Section 5.1. We then discuss
how we combine the method of moments and the indirect inference approach in Sections 5.2
and 5.3 to discipline the remaining parameters and match the data moments.
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Table 5: Parameter Values and Sources

Parameter Value Sources/Targeted Moments

Panel A: Exogenously Calibrated Parameters

σ—Elasticity of substitution across varieties 5 Head and Mayer (2014)
κ̄—Constant in firm exit rates 0.08 data
rm—Region-specific probability of flooding 0.18 (0.10) data
δ—GDP loss due to flooding events 0.006 see regression table
δk—Firm exits due to flooding events 0.008 see regression table
η—Utility loss due to flooding events 0.002 Barrage (2020)

Panel B: Internally Calibrated Parameters (Match Targeted Moments)

Ām—Region-specific productivity 2.40 (2.53) regional real GDP
B̄m—Region-specific amenity 0.41 (0.65) regional population
ψm—Region-specific labor supply disutility 0.35 (0.34) regional emp-to-pop ratio
fm—Region-specific firm entry costs 0.09 (0.03) regional firm count
φL—Convexity of labor supply disutility 1.55

{
Employment and population

responses to flood riskφM—Shape parameter of location preferences 0.84

Notes: Parameter values for {rm, Ām, B̄m, ψm, fm} are averages across all counties. The standard deviations
are in parentheses.

5.1 Exogenously Calibrated Parameters

Panel A of Table 5 displays the parameter values obtained directly from the literature and
the data. We consider each region as a county.20 We set the elasticity of substitution across
varieties as σ = 5,21 which is the mean estimate in the trade literature (Head and Mayer,
2014). We obtain an annual exit rate of κ̄ = 0.08 for the U.S. firms from the County Business
Patterns data in 2018.

In our empirical analysis, we have utilized the county-year-level share of flood events from
the Global Active Archive of Large Flood Events to estimate the true damages caused by
these events. However, in order to apply these estimates to calibrate the actual flood damages
in the quantitative model, it is crucial to ensure that both flood risk and the occurrence of
flood events are measured in the same units. While areas with flood risk are defined as flood

20We consider all the counties with available data on population, employment, GDP, and flood risk in
2018. These counties collectively account for 96% of the U.S. aggregate GDP in 2018.

21By assigning an elasticity value of 5, we imply a markup rate of 0.25 for firms, calculated as 1/(σ − 1).
This value falls within the range of empirical estimates found in the literature, as discussed in a comprehensive
review by Basu (2019). For instance, De Loecker and Eeckhout (2017) discovered average markups ranging
from 0.18 to 0.67 between 1980 and 2014 using Compustat data. Similarly, Hall (2018) found a markup ratio
of 0.3 based on KLEMS productivity data from 1987 to 2015.

28



zones (with at least a 1% chance of being inundated by a flood event in any given year), the
likelihood of these areas being flooded can exceed 1%. To maintain consistency, we adjust
the data on the share of areas in flood zones by regressing the county-year-level actual shares
of flooded areas observed between 2015 and 2019 against the county-level shares of areas in
flood zones in 2018. Subsequently, we employ the estimated intercept and slope to convert
the share of areas in flood zones into the probability of flood events, denoted as {rm}. By
our procedure, in our calibrated model, the probability {rm} reflects the predicted annual
share of lands that would experience floods in 2018. We adopt a similar procedure to use
the share of areas in flood zones in 1998 to construct the probability of flood events {rm,1998}
in 1998, which will be used in the indirect inference to calibrate the elasticities as described
below. The detailed results are provided in Appendix C.1.

We use our reduced-form evidence to inform the model parameters related to damages
of flood events, namely {δ, δκ, η}. As the probability {rm} reflects the predicted annual
share of lands that experience floods, our reduced-form evidence on how the increase in the
share of flooded land led to GDP losses22 and firm exits directly corresponds to the model
parameters {δ, δk}. Using the reduced-form evidence, we obtain a productivity damage
value of δ = 0.006 and firm exit responses of δκ = 0.008.23 Given the lack of county-level
amenity measures, we follow the approach of Barrage (2020), who demonstrated that in
DICE models on temperature changes, the ratio of output damages to workers’ direct utility
damages is approximately 3. Therefore, we assume that η = 0.002 is roughly one-third of
output damages δ = 0.005. We find that the parameter value of η has little effect on the
national-level productivity impact of floods, as it primarily affects population relocation with
offsetting effects of in- and out-migration regions, as shown below.

5.2 Internally Calibrated Parameters

Instead of directly applying the “Exact Hat Algebra” approach (Dekle, Eaton and Kor-
tum, 2008),24 we directly calibrate all the model parameters and solve the model using the

22We note that GDP data cannot capture changes in the number of varieties.
23Considering the potential delayed impacts of flood events, we sum up the damages from both the current

period and the one-year lag period. This calculation is based on Columns (2) and (5) of Table A.8. Since
the impact of floods on output in the one-year lagged period is already minimal, we do not take into account
any additional lagged periods.

24In our model extension that incorporates bilateral trade between regions, we are unable to utilize the
“Exact Hat Algebra” approach due to the lack of direct observation of the trade network between regions.
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iterative algorithm developed by Alvarez and Lucas (2007). We calibrate four sets of region-
specific parameters {Ām, B̄m, fm, ψm} such that our model-generated moments match data
on regional GDP, population, employment, and firm count. Although all the parameters
are jointly estimated, we can isolate the parameter that drives the identification of a given
moment. Specifically, region-specific productivity {Ām} is identified by GDP in each region,
while region-specific amenities {B̄m} are identified by population in each region, given the
real wages. Similarly, the employment-to-population ratio in each region informs the labor
supply disutility {ψm}, and the number of firms in each region informs the entry costs {fm}.
Since units of GDP, population, and firm count do not affect our counterfactual results, we
normalize the national total GDP, population, and firm count to 1 in our baseline calibration.

We apply the indirect inference approach (Gouriéroux and Monfort, 1996)25 to jointly
search the elasticities {φM , φL} such that our model-generated employment and population
responses to changes in flood risk between 1998–2018 match the actual responses.

Procedure. We jointly determine the region-specific parameters {Ām, B̄m, fm, ψm} and
labor supply elasticities {φM , φL} through the following process. In the inner loop, we
calibrate the region-specific parameters {Ām, B̄m, fm, ψm} to match the GDP, population,
firm count, and employment-to-population ratio in each region, given a set of {φM , φL}. In
the outer loop, we change the probability of flood events from {rm} to {rm,1998}. Then,
we perform the same panel regressions as presented in Table 1 by regressing employment
and population on flood risk (the proportion of areas within flood zones), using the model-
generated data. To be conservative, we focus on our baseline estimates. Finally, we choose
the labor supply elasticities {φM , φL} to minimize the absolute difference between the model-
generated responses and the observed coefficients.

Therefore, to ensure consistency between our baseline model and alternate model extensions, we directly
calibrate the model’s fundamental parameters instead of utilizing the ’Exact Hat Algebra’ approach. We
conducted experiments with the “Exact Hat Algebra” approach for our baseline model and found that it
produced highly similar counterfactual results compared to directly calibrating the fundamental parameters.

25The indirect inference approach is a procedure, whereby the econometrician seeks the structural pa-
rameters to minimize the distance between the estimates from econometric models on the real data and the
estimates from the same econometric models estimated on the simulated data.
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5.3 Calibration Results

Panel B of Table 5 displays the internally calibrated parameter values, which we find to be
reasonable. For instance, the elasticity of regional population with respect to real wages, as
implied by our parameters, is φM(1 + φL) ≈ 2.1, falling within the range of 1.1–2.5 surveyed
by Fajgelbaum et al. (2018).26 Our calibration implies that Arizona and California have
high calibrated amenities, whereas the central United States has low calibrated amenities.
Additionally, states like New York, California, and Washington exhibit high calibrated pro-
ductivities, while states such as Mississippi and Alabama have low calibrated productivities.
We observe a minimal correlation between productivities and amenities. These patterns of
amenities and productivities align with the findings of Allen and Arkolakis (2014).

Although the parameter values of productivity, amenity, labor disutility, and entry costs
depend on the normalization and geographic levels and, therefore, cannot be directly com-
pared across studies, our model shows a good match with the data moments. Appendix Table
C.1 compares the four sets of targeted moments (regional GDP, population, employment-
to-population ratio, and firm count) predicted by our model with the corresponding data
moments. The cross-regional correlation is almost unity for all sets of targeted moments,
suggesting that our calibrated model matches the targeted moments very well.

Table 6 compares the actual and model-generated regression results. Columns (1) and
(2) display the targeted regression coefficients, and with the calibrated structural elasticities
{φM , φL}, our model generates similar employment and population responses to changes in
the share of flood-prone areas between 1998 and 2018 as observed in the data.

Columns (3)–(5) present the non-targeted responses. Column (3) shows the output re-
sponse to changes in flood risk, for which our model-generated estimate is smaller than the
county-level data estimate but not far from the ZIP-code-level estimates (see Table 1). Col-
umn (4) displays the responses of firm entry, and our model-generated response is close to
the data estimate. In our model, the number of entrants is proportional to employment,
and thus, the model-generated response of firm entry mimics the employment response in
Column (1). In Section 6.3.1, we discuss how changes in the model assumption on entry
costs may generate different entry responses. Lastly, in Column (5), we demonstrate that
our model successfully reproduces the empirically observed negative relationship between

26See Table A.17 in Fajgelbaum et al. (2018).
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Table 6: Comparison of Actual and Model-generated Regression Results

(1) (2) (3) (4) (5)
Targeted Non-targeted

log(Employment) log(Population) log(Output) log(Entry) log(Exit)

Actual Data:

Flood risk -0.199*** -0.130*** -0.278*** -0.169** -0.111
(0.054) (0.042) (0.070) (0.080) (0.074)

Model-generated Data:

Flood risk -0.203*** -0.120*** -0.209*** -0.203*** -0.198***
(0.003) (0.002) (0.003) (0.003) (0.003)

Notes: We perform the panel regression using the observed and model-generated data in 1998 and 2018, following the same
specifications as in the even-numbered columns of Table 1. Significance levels: * 10%, ** 5%, *** 1%.

changes in flood risk and the average number of firm exits. Specifically, higher flood risk
increases the likelihood of firm closures, given a constant number of firms. However, the
rise in flood risk also deters firm entry, leading to a decrease in the overall number of firms.
Our findings indicate that the combined effect of these two factors results in a net negative
impact, which corresponds with the empirical evidence.

6 Counterfactual Exercises

In this section, we apply our calibrated model to study the aggregate and distributional
effects of flood risk, which we present in Sections 6.1 and 6.2, respectively. In Section 6.3, we
demonstrate how our quantitative results change when we extend our baseline model with
richer elements. Finally, in Section 6.4, we evaluate the impact of predicted future changes
in flood risk between 2020 and 2050.

6.1 Aggregate Productivity Effects of Flood Risk

Panel A of Table 7 presents the aggregate effects of flood risk in 2018, which is computed by
comparing the baseline equilibrium to the counterfactual scenario with flood risk {rm} set
to 0. We find that, in the aggregate, flood risk caused a 0.53% decline in output, as well as a
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Table 7: Aggregate Effects of Flood Risk in 2018

Panel A: Aggregate Effects

Output Employment Firm Entry Firm Exits Welfare

Overall risk in 2018 -0.53% -0.33% -0.30% -0.15% -0.52%

Panel B: Decomposition of Output Losses
Decomposition of Output Losses

Direct Damage Labor Relocation Labor Supply Variety Effects

Overall risk in 2018 -0.12% 0.02% -0.31% -0.08%

0.33% reduction in employment, a 0.30% decline in the number of firm entrants, and a 0.15%
decline in the number of firm exits. Lastly, we observe that flood risk resulted in a 0.52%
decrease in individuals’ welfare, reflecting amenity losses from flood risk, as well as real wage
losses resulting from productivity damages and reduced variety in the consumption basket.

Panel B of Table 7 decomposes the output loss into three channels—direct damages,
employment, and varieties—by allowing population shares, labor supply, and the number of
varieties to respond separately to flood risk.27 We further decompose employment changes
into changes in population shares (labor relocation across localities with no changes in labor
supply per individual in each locality), referred to as “labor relocation,” and changes in labor
supply per individual, referred to as “labor supply.”

The decomposition reveals that direct damages from flood risk caused a 0.12% decline
in output, a magnitude similar to the estimate by FEMA (Grimm, 2020) that shows the
cost of flood damage was around $17 billion annually between 2010 and 2018, accounting for
approximately 0.1% of annual GDP. Direct damages represent only 23% of the overall output
loss. In other words, disregarding adjustments made by workers and firms significantly
underestimates the aggregate productivity loss, as demonstrated by the last three columns
of Panel B in Table 7. Labor relocation had a minimal impact of 0.02% on aggregate output,

27To separate the effects of direct damages, we simulate the effects of changes in flood risk while keeping
labor supply and population shares in each region constant. We then allow population shares to adapt to the
level observed in the hypothetical scenario where there is no flood risk. This allows us to isolate the effects of
labor relocation. Subsequently, we permit labor supply to adjust to the level witnessed in the counterfactual
scenario with no flood risk, thus enabling us to isolate the effects of labor supply. Finally, we compute how
changes in the number of varieties in each region further alter the aggregate output.
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primarily due to the offsetting effects of workers relocating across regions.28 Output losses
resulting from reduced labor supply accounted for 58% of aggregate output losses, indicating
significant amplification effects of workers’ endogenous labor supply, while fewer varieties
due to less firm entry contributed another 15% of the aggregate output losses.

6.2 Distributional Effects of Flood Risk

Flood risk varies significantly across locations. While the output loss was 0.53% at the
national level, the top 5% and top 1% counties (ranked by output losses) experienced a 9.1%
and 15.9% decrease in output, respectively. This indicates substantial heterogeneity in the
impact of flood risk across localities in the United States.

Based on the analytical result in Proposition 2, Figure 4 displays the county-level out-
put changes decomposed into the main channels—direct damages, employment (population
multiplied by labor supply per individual), and firm entry. Concerning direct damages, we
observe that most counties experienced negative damages, especially those in the southern
and eastern regions (particularly along the coastline), consistent with the flood risk geogra-
phy shown in Figure 1. These affected counties lost population to other counties, resulting in
reduced labor supply per individual and firm entry. Consistent with the significant drops in
output, the upper 1% counties (ranked by corresponding losses in 2018) experienced a 7.1%
decline in population, a 5.4% decrease in labor supply per individual, and a 12.5% reduction
in the number of firms. However, counties that were mildly affected by flood risk (e.g., some
middle Western counties) were, in fact, “winners” from the flood risk. They benefited from
labor relocation from risky coastal areas, resulting in increased firm entry and labor supply
per worker (as more varieties increase workers’ utility).

28The lack of correlation between flood risk and GDP per capita at the county level leads to the conclusion
that flood-induced worker reallocation across different areas may not necessarily be influential. However,
there are studies, such as Bryan and Morten (2015), that indicate significant gains from reducing mobility
costs in the US, suggesting that misallocation of resources across space can impact overall productivity.
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Figure 4: Distributional Effects of Flood Risk in 2018

(a) Direct damages (b) Population

(c) Labor supply per worker (d) Firm entry

6.3 Model Extensions

6.3.1 Alternative Assumptions about Firm Entry

In our baseline model, changes in firm entry mimic changes in employment because entry
costs are paid in terms of a fixed amount of labor. We now experiment with an alternative
assumption on firm entry costs. Following recent literature that shows creating new firms
requires material costs (Atkeson and Burstein, 2010; Acemoglu and Cao, 2015), we consider
entry costs as fmWm(s)1−αPm(s)α, where α is the fraction of entry costs spent on final goods.
Figure 5 illustrates the aggregate impact of flood risk in 2018 under different parameter values
of α. The responses of firm entry to changes in flood risk increased with the share of entry
costs spent on final goods, as final-good prices were more responsive to flood risk than wages
(final-good prices were affected not only by wages but also by firm productivity and the
number of varieties). As a result of fewer firms, the output losses from the flood risk also
slightly increased with the share of entry costs spent on final goods. As shown in Table 8,
when entry costs were fully paid by final goods (α = 1), the aggregate output loss from the
flood risk was -0.57%, larger than the baseline result (-0.53%), which corresponds to the case
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where entry costs were fully paid by labor (α = 0).

Figure 5: Entry Costs and Aggregate Impact of Flood Risk

Table 8: Aggregate Impact of Flood Risk in 2018 across Different Model Specifications

Output Employment Firm Entry Firm Exits Welfare

(1) Baseline model -0.53% -0.33% -0.30% -0.15% -0.52%
(2) Entry costs paid in goods -0.57% -0.31% -0.56% -0.41% -0.57%
(3) Allowing for interregional trade -0.63% -0.52% -0.45% -0.30% -0.61%
(4) Allowing for capital & housing -0.64% -0.33% -0.31% -0.16% -0.55%
(5) Heterogeneous firm productivity -0.51% -0.31% -0.29% -0.14% -0.50%

6.3.2 Interregional Trade Networks

In the baseline model, we do not consider goods flows across regions. In Appendix B.4, we
extend the model to include two sectors—traded and non-traded sectors—in each county.
We find that holding other parameters constant, incorporating trade into the model would
result in a reduced impact of floods on real wages due to reduced price volatility (as workers
can source some consumption goods from non-affected regions). Consequently, employment
will display a lower level of responsiveness to flood risk as well. As our calibration targets the
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response of employment to flood risk, we find that, in the recalibration, we require a larger
value of labor supply elasticity (φL = 1.72) to match the observed employment changes in
response to changes in local flood risk. Since a greater labor supply elasticity generates a
larger decline in aggregate labor supply resulting from increases in flood risk, the overall loss
in aggregate output due to flood risk is thus slightly larger when trade is accounted for.

6.3.3 Capital and Housing

Our baseline model assumes labor as the only input in firm production. In Appendix B.5,
we extend the model to include both capital and structures (housing) in firm production and
also consider that housing matters for workers’ utility. Capital is mobile across regions and
can be rented at a constant real rate from the global market, whereas housing is supplied
locally following Serrato and Zidar (2016). We recalibrate the model to the data.

As shown in Table 8, in this alternative model that considers capital and housing, the
output losses due to flood risk were 0.64% in 2018, which is higher than 0.53% in our
baseline model. The primary reason for the larger impact is that flood risk not only lowered
employment but also decreased the capital-to-labor ratio, as capital usage became relatively
more expensive than labor in the presence of flood risk.29

6.3.4 Heterogeneity in Firm Productivity

In our baseline model, we presumed uniformity among firms within each location. However,
in reality, firms can exhibit heterogeneity in their productivity levels, making smaller firms
more vulnerable to flood shocks. Acknowledging this, we adopt the Melitz (2003) approach
to model the firm sector in each region, as detailed in Appendix B.6. Specifically, we assume
that firms display varying productivity levels, and in addition to entry costs, they must also
cover fixed operational costs to actively produce. Consequently, only unproductive (small)
firms will cease operations due to their unwillingness to bear the fixed operational costs.
In the recalibration of this extended model, we determine fixed operational costs and their
dependence on floods to ensure that the annual exit rate is 0.08 in every location, and floods

29The real return of capital remained constant, while workers’ real wages declined in the presence of flood
risk. Quantitatively, we find that flood risk in 2018 lowered the U.S. aggregate capital-to-labor ratio by
0.37%.
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result in a 0.8% increase in exits, consistent with our baseline calibration.

We discover that the quantitative outcomes of this model extension closely resemble our
baseline findings, as flood-induced exits have a small magnitude. If anything, we observe that
output losses from flood risk are slightly reduced in this extended model compared to our
baseline results. This is because, in contrast to the baseline model that assumes homogeneous
firms, exiting firms are smaller and have a lesser impact in this model extension.

Taken together, when we incorporate additional factors, these extensions indicate that
flood risk may have a slightly stronger impact on the economy. However, it is essential
to note that the economic forces in our baseline model still remain the main driving force
behind the productivity impact of floods.

6.4 Future Changes in Flood Risk

Flood risk is likely to increase as a result of greenhouse gas emissions. To assess the impact
of these potential changes in flood risk on the U.S. economy, we adjust the flood risk {rm} in
our baseline model using First Street Foundation’s county-level predictions on proportional
changes in flood risk between 2020 and 2050. On average, the proportion of properties at
risk of flooding is expected to rise by 4.5% between 2020 and 2050.

According to the data presented in Table 9, the projected rise in flood risk from 2020
to 2050 is expected to cause a 0.13% decline in aggregate output. This decline is not large
considering the relatively limited increase in flood risk during the same period. Our projected
output loss is comparable to that of Desmet et al. (2021), who demonstrate that sea level
rise due to climate changes will lead to a 0.11% loss in global real GDP in the next century.
As previously, only 10% of the output losses arise from direct damages.30 The remaining
output losses stem from reduced labor supply and firm entry, highlighting the significance
of accounting for the long-run adjustments of workers and firms.

30In comparison with the flood risk in 2018, the role of direct damages in output losses is reduced. This
is because the predicted increase in flood risk is more positively correlated with regional productivity levels.
In our model, higher risk in more productive regions would result in larger aggregate amplification effects
(for example, more people would leave highly productive regions, which in turn lowers firm entry and affects
labor supply in these regions).
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Table 9: Aggregate Effects of Future Changes in Flood Risk, 2020–2050

Panel A: Aggregate Effects

Output Employment Firm Entry Firm Exits Welfare

Changes in risk, 2020–2050 -0.135% -0.057% -0.053% -0.037% -0.055%

Panel B: Decomposition of Output Losses
Decomposition of Output Losses

Direct Damage Labor Relocation Labor Supply Variety Effects

Changes in risk, 2020–2050 -0.013% -0.038% -0.058% -0.026%

7 Conclusion

Using recently available data, we demonstrate that increasing flood risk has a large negative
impact on firm entry, employment, and output in the long run, whereas flood events reduce
output in the short run. Building on these findings, we develop and apply a spatial equilib-
rium model to estimate the aggregate impact of increasing flood risk. In our model, firms
decide whether to enter a locality, taking into account the expected flood risk, while workers
decide whether to relocate and how much labor to supply. Realized floods affect the average
productivity of firms and the average amenity of workers in a given locality. Quantitatively,
we find that flood risk reduced U.S. aggregate output by 0.53% in 2018, with 77% of the
loss arising from the long-run adjustments of firms and workers in response to risk and 23%
from direct damages.

While our analysis focuses solely on flood risk in the U.S. to leverage systematic data
for measuring flood risk, our methodology can be extended to the study of other natural
disasters in diverse contexts. Our findings underscore that accounting only for direct damages
significantly underestimates the actual losses associated with natural disasters, as firms and
workers rationally adjust their economic activities in anticipation of these risks. Therefore,
any policy aimed at reducing climate damages needs to consider the long-run adaptations of
firms and workers. Our results also emphasize the importance of incorporating endogenous
general equilibrium responses to flood risk in evaluating the cost of natural disasters.
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Appendix for Online Publication

A Reduced-form Evidence: Additional Results

Figure A.1: Log Changes in Number of Workers by Residence Relative to Number of
Workers by Workplace, County-level

Notes: Flood risk at the county level is measured by the percentage of the share of land areas within the 100-year floodplain.
In order to gather data on commuting flows between counties, we utilize two data sources: the Census for 2000 and the
2016-2020 5-Year ACS Commuting Flows for 2020. By aggregating these commuting flows, we calculate the number of
workers residing in each county (regardless of their workplace locations), as well as the number of workers employed within
each county (regardless of their residence locations), for both 2000 and 2020.
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Figure A.2: Change in Flood Risk, County-Level, 1998 (FEMA) and 2018 (First Street
Foundation)

Notes: Flood risk at the county level is measured by the percentage of properties within the 100-year floodplain. The
map illustrates the changes in the proportion of properties within the 100-year floodplain between 1998 and 2018 for each
county. Blank areas on the map indicate regions without flood map coverage based on First Street Foundation’s maps
accessed in 2018. First-Street-Foundation (2018): v1.2.
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Table A.1: Summary Statistics

Panel A: Outcome Variables

(1) (2) (3) (4) (5)
log(Entry) log(Exit) log(Employment) log(Population) log(Real GDP)a

Year = 1998 4.27 4.13 9.09 9.93 13.65
(1.39) (1.36) (1.55) (1.19) (1.52)

Year = 2018 3.94 3.94 9.14 10.03 13.96
(1.51) (1.47) (1.64) (1.39) (1.54)

Panel B: Demographic and Economic Controls

(1) (2) (3) (4) (5)
Manufa. Share Female Share ∆China Import Pop per Sqkm Cum. Flood Share

Year = 1998 0.21 0.51 36 0.31
(0.15) (0.02) (167) (0.44)

Year = 2018 0.16 0.50 26.16 60 5.09
(0.13) (0.02) (10.83) (361) (3.13)

Panel C: Independent Variables

(1) (2)
Flood Risk Flood Shareb

Year = 1998 0.06 0.07
(0.24) 0.24

Year = 2018 0.12 0.24
(0.13) (0.40)

Notes: a: As the BEA county-level GDP data commences from 2001, we consider 2001 as the initial year for
log(Real GDP), rather than 1998. b: For similar reasons, we focus on a balanced panel from 2001-2008 for results
on yearly flood events. We consider 2001 as the initial year for log(flood share), rather than 1998. Employment consists
of full and part-time paid employees. Population refers to “prime age” population between 15 to 64 years. The changes
in China import penetration is defined as changes in Chinese import exposure per worker in a region, where regional
imports are calculated according to its national industry employment share (Autor, Dorn and Hanson, 2013). Data
sources: Bureau of Economic Analysis, the U.S. Census data series and Autor, Dorn and Hanson (2013). Standard
deviations are provided in parentheses.
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Table A.2: The Impact of Long-run Change in Flood Risk: Fixed Effects Estimates, Q3

(1) (2) (3) (4) (5)

log(Entry) log(Exit) log(Employment) log(Population) log(Output)

Flood Risk -0.341** -0.208 -0.327*** -0.226** -0.236*
(0.150) (0.159) (0.115) (0.105) (0.131)

Observations 2260 2260 2260 2260 2260
County FE Yes Yes Yes Yes Yes
State×Year Yes Yes Yes Yes Yes
Other Controls Yes Yes Yes Yes Yes
Flood Share Yes Yes Yes Yes Yes

Notes: The sample is restricted to counties with available Q3 maps in 1998. Outcome variables are represented in log values. The
primary independent variable, Flood Riski,t, signifies the percentage of land area within FEMA’s special flood zones in county i and
year t. We are interested in the long-run impact of flood risk, so we focus on t being 1998 and 2018. All regressions account for locality
fixed effects, state-by-year fixed effects, and a comprehensive set of demographic and economic controls. Standard errors are clustered
at the county level. Significance levels: * 10%, ** 5%, *** 1%.
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Table A.3: The Impact of Long-run Change in Flood Risk: Fixed Effects Estimates, Q3, Placebo

(1) (2) (3) (4)

log(Entry) log(Exit) log(Employment) log(Population)

Flood Risk -0.0816 0.0255 -0.0908 -0.0232
(0.129) (0.132) (0.088) (0.087)

Observations 2330 2330 2330 2330
County FE Yes Yes Yes Yes
State×Year Yes Yes Yes Yes
Other Controls Yes Yes Yes Yes
Flood Share Yes Yes Yes Yes

Notes: The sample incorporates placebo tests with prior period outcome data in 1990 and 1998, and flood risk data in 1998 and
2018. The regressions include counties with available Q3 maps in 1998. Outcome variables are expressed in log changes. The primary
independent variable, Flood Riski,t, signifies the percentage of land area within FEMA’s special flood zones in county i and year t.
All regressions account for locality fixed effects, state-by-year fixed effects, and a comprehensive set of demographic and economic
controls. Standard errors are clustered at the county level. Significance levels: * 10%, ** 5%, *** 1%.
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Table A.4: The Impact of Long-run Change in Flood Risk: Fixed Effects Estimates, Fewer Controls

(1) (2) (3) (4) (5)

log(Entry) log(Exit) log(Employment) log(Population) log(Output)

Flood Risk -0.187** -0.133* -0.232*** -0.128*** -0.289***
(0.082) (0.074) (0.056) (0.043) (0.071)

Observations 5072 5072 5072 5072 5072
County FE Yes Yes Yes Yes Yes
State×Year Yes Yes Yes Yes Yes
Other Controls Yes Yes Yes Yes Yes
Flood Share Yes Yes Yes Yes Yes

Notes: Outcome variables are represented in log values. The primary independent variable, Flood Riski,t, signifies the percentage of
land area within FEMA’s special flood zones in county i and year t. We are interested in the long-run impact of flood risk, so we focus
on t being 1998 and 2018. All regressions account for county fixed effects, state-by-year fixed effects, the cumulative shares of actual
flooded areas between 1998–2018, the China import penetration ratio and population density. Given the concern that manufacturing
employment share and changes in female share could be endogenous outcomes, these variables are not included as controls. Standard
errors are clustered at the county level. Significance levels: * 10%, ** 5%, *** 1%.
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Table A.5: The Impact of Long-run Change in Flood Risk: Fixed Effects Estimates, State-Level Clustering

(1) (2) (3) (4) (5)

log(Entry) log(Exit) log(Employment) log(Population) log(Output)

Flood Risk -0.169* -0.111 -0.199*** -0.130** -0.278***
(0.096) (0.086) (0.057) (0.059) (0.073)

Observations 5072 5072 5072 5072 5072
County FE Yes Yes Yes Yes Yes
State×Year Yes Yes Yes Yes Yes
Other Controls Yes Yes Yes Yes Yes
Flood Share Yes Yes Yes Yes Yes

Notes: Outcome variables are represented in log values. The primary independent variable, Flood Riski,t, signifies the percentage of
land area within FEMA’s special flood zones in county i and year t. We are interested in the long-run impact of flood risk, so we focus
on t being 1998 and 2018. All regressions account for county fixed effects, state-by-year fixed effects, the cumulative shares of actual
flooded areas between 1998–2018, and a comprehensive set of demographic and economic controls. Standard errors are clustered at
the state level. Significance levels: * 10%, ** 5%, *** 1%.
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Table A.6: First-stage Selected Geo-climatic Variables Based on LASSO-IV

Cross-fitting fold #

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
∆state_risk -0.040 -0.034 -0.041 -0.040 -0.040 -0.041 -0.040 -0.041 -0.040 -0.040
∆state_risk ∗∆state_risk -0.025 -0.040 -0.022 -0.022 -0.023 -0.021 -0.023 -0.022 -0.023 -0.024
evaporation2 ∗∆state_risk2 -0.001 -0.001 -0.001 -0.001 -0.001 -0.002 -0.001 -0.001
temperature 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.001 0.001 0.000
temperature ∗ evaporation 0.000 0.000 0.000 0.000 0.000 0.000
evaporation2 -0.001

Notes: This table displays the first-stage geo-climatic instruments with their corresponding weights for each fold in the cross-fit partialing-out
LASSO-IV algorithm. Temperature denotes air temperature, and evaporation denotes the accumulated water evaporated from land surface.
∆state_risk denotes changes in flood risk in the rest of the state from 1998 to 2018.
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Table A.7: Impact of Long-run Change in Flood Risk: Property-weighted Measure from FEMA

(1) (2) (3) (4) (5)

∆log(Entry) ∆log(Exit) ∆log(Employment) ∆log(Population) ∆log(Output)

∆Flood Risk -0.562*** -0.530*** -0.610*** -0.403*** -0.462***
(0.142) (0.141) (0.097) (0.069) (0.155)

Observations 2812 2812 2812 2812 2812
State FE Yes Yes Yes Yes Yes
Other Controls & FE Yes Yes Yes Yes Yes
Flood Share Yes Yes Yes Yes Yes

Notes: Outcome variables are expressed in log changes. The main independent variable, ∆Flood Riski, indicates changes in the
percentage of properties within the 100-year floodplain in locality i between 1998 and 2018, determined using the historic Q3 and
current FEMA FIRM maps. All regressions control for state fixed effects, actual flooded area, and an extensive set of demographic
and economic controls. Standard errors are clustered at the county level. Significance levels: * 10%, ** 5%, *** 1%.
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Table A.8: The Impact of Short-Run Actual Floods: Fixed Effects Estimates, Lagged Shocks

(1) (2) (3) (4) (5)

log(Entry) log(Exit) log(Employment) log(Population) log(Output)

Flood Share 0.001 0.003 -0.001 0.001*** -0.005***
(0.004) (0.004) (0.001) (0.000) (0.002)

L.Flood Share -0.004 0.005 0.000 -0.000 -0.001
(0.004) (0.004) (0.001) (0.000) (0.001)

Observations 49376 49376 49376 49376 49376
County FE Yes Yes Yes Yes Yes
State×Year FE Yes Yes Yes Yes Yes
Initial Controls & Trends Yes Yes Yes Yes Yes
ymean 4.06 4.02 9.02 9.96 13.78

Notes: Outcome variables are represented in log terms. The primary independent variable, Flood Sharei,t, denotes the percentage of
land area flooded in county i during year t. We are interested in the short-run impact of yearly floods, and the sample period covers
2001–2018. All regressions account for county fixed effects, state-by-year fixed effects, and a comprehensive set of initial controls with
year trends. Standard errors are clustered at the county level. Significance levels: * 10%, ** 5%, *** 1%.
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B Proofs

B.1 Labor Supply and Location Choices

We first obtain the optimal labor supply lm for individuals that stay in m. Individuals’
utility can be written as:

∑
s

Pr(s)Um(s) =
∑
s

Pr(s)vmBm(s)

[
Wm(s)

Pm(s)
lm − ψm

l
1+1/φL
m

1 + 1/φL

]
. (B.1)

Taking the first-order condition with regard to labor supply lm, we obtain:

∑
s

Pr(s)vmBm(s)
Wm(s)

Pm(s)
=
∑
s

Pr(s)vmBm(s)ψml
1/φL
m . (B.2)

After some arrangement of the equation, we can obtain labor supply in equation (9). By
plugging equation (B.2) into equation (B.1), we obtain:

∑
s

Pr(s)Um(s) =
∑
s

Pr(s)vmBm(s)ψm
l
1+1/φL
m /φL
1 + 1/φL

. (B.3)

For ease of notation, denote xm =
∑

s Pr(s)Bm(s)ψm
l
1+1/φL
m /φL

1+1/φL
. Thus, a worker would choose

location m if vmxm ≥ vnxn ∀ n. Note that location preference vm follows Fréchet distribution
Gm(vm) = exp(−v−φMm ) and is i.i.d. across locations. Therefore,

Λm =

∫ ∞
0

∏
n 6=m

Gn

(
vmxm
xn

)
gm(vm)dvm

=

∫ ∞
0

exp

(
−
∑
n

(
xm
xn

)−φM
v−φMm

)
φMv

−φM−1
m dvm

=
xφMm∑
n x

φM
n

.

(B.4)

The first equality defines the probability of choosing location m, which is a weighted average
of the probability to choose location m under location preference vm,

∏
n6=mGn

(
vmxm
xn

)
,31

31Under location preference vm, the probability of vn such that vmxm ≥ vnxn is Gn
(
vmxm

xn

)
.
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over the distribution of location preference vm. The second equality uses the cumulative and
density probability of Gm. The third equality computes the integral of the equation. After
plugging xm =

∑
s Pr(s)Bm(s)ψm

l
1+1/φL
m /φL

1+1/φL
into the equation, we obtain equation (10).

The average expected utility of individuals in nationwide is given by:

∑
m

ΛmE

[∑
s

Pr(s)Um(s)
∣∣∣choose region m

]

=
∑
m

Λm

∫∞
0
vmxm

∏
n6=mGn

(
vmxm
xn

)
gm(vm)dvm∫∞

0

∏
n 6=mGn

(
vmxm
xn

)
gm(vm)dvm

=
∑
m

Λm

∫∞
0
xmvm exp
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−
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n

(
xm
xn

)−φM
v−φMm

)
φMv

−φM−1
m dvm

Λm

=
∑
m

Λm

xm
∫∞

0

(∑
n

(
xm
xn

)−φM)1/φM

y−1/φM exp (−y) 1∑
n(

xm
xn

)
−φM dy

Λm

=
∑
m

Λm

(∑
n

xφMn

)1/φM ∫ ∞
0

y−1/φM exp(−y)dy = Γ

(
1− 1

φM

)(∑
n

xφMn

)1/φM

.

(B.5)

Γ(·) is the gamma function. The first equality follows from the definition of average utility for
individuals in region m, and the second equality uses the distribution of location preferences
as well as the formula for location choices in equation (B.4). The third equality applies the

exchange of variables y =
∑

n

(
xm
xn

)−φM
v−φMm , and the final line simplifies the formula. By

plugging xn into equation (B.5), we complete the proof.

B.2 Proof of Proposition 1

Note from equation (9), Lm ∝ Λmlm, and Nm(s) ∝ Lm(1 − κ(s)), we can solve lm as a
function of Λm up to a constant.

lm ∝ (Λm)

φL
σ−1

1− φL
σ−1 (B.6)
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Plugging lm into equation (10), we obtain:

Λm =
Cm (Λm)

φM (1+φL)

σ−1−φL∑
m′ Cm′ (Λm′)

φM (1+φL)

σ−1−φL

(B.7)

where Cm is a region-specific constant and also captures damages of floods. For ease of
notation, let δ = φM (1+φL)

σ−1−φL
.

We are interested in whether equation (B.7) yields a unique solution of {Λm}. To make
progress, define xm,1 = Λm and xm,2 =

∑
m′ Cm′ (Λm′)

δ. Then equation (B.7) can be refor-
mulated by a system of equations:

xm,1 = Cmx
δ
m,1x

−1
m,2, (B.8)

xm,2 =
∑
m′

Cm′x
δ
m′,1. (B.9)

Then we can apply Theorem 1 in Allen, Arkolakis and Li (2015) to show the unique of the
equilibrium. Specifically, define:

Γ =

[
1 0

0 1

]

B =

[
δ −1

0 δ

]
Theorem 1 in Allen, Arkolakis and Li (2015) shows that if the largest eigenvalue of |BΓ−1|
is smaller or equal to 1, which means that |δ| ≤ 1, there is at most one strictly positive
solution. After solving {Λm}, all other variables are uniquely pinned down. In particular, lm
is uniquely determined by equation (B.6), and aggregate output is determined by equation
(14).

B.3 Proof of Proposition 2

We first take a log-linearization of equation (16) and then take the full derivative of it:

dΛ̂m = φM

[
(1 + 1/φL)dl̂m − ηdrm

]
. (B.10)
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Thus, we obtain equation (18). Noting that Lm ∝ Λmlm and Nm(s) ∝ Lm(1 − κ(s)) and
given that annual exit rate k̄ is small in reality, we can also easily obtain dL̂m = dΛ̂m + dl̂m

and dÊNm = dL̂m − κ̄δκdrm as in equations (19)–(20). We then take a log-linearization of
equation (15) and take the full derivative around rm = 0:

dl̂m = −φL
(
δ +

1

σ − 1
κ̄δκ

)
drm +

φL
σ − 1

dN̂m

= −φL
(
δ +

1

σ − 1
κ̄δκ

)
drm +

φL
σ − 1

(
dΛ̂m + dl̂m

)
= −φL

(
δ +

1

σ − 1
κ̄δκ

)
drm +

φL
σ − 1

(
(φM(1 + 1/φL) + 1) dl̂m − φMηdrm

)
.

(B.11)

The first equality is the result of log-linearization and full derivation. The second equality
uses dN̂m = dL̂m and dL̂m = dΛ̂m+dl̂m. The third equality uses dΛ̂m = φM

[
(1 + 1/φL)dl̂m − ηdrm

]
.

Noting that there is only one unknown dl̂m in equation B.11, we can solve dl̂m as an equation
of drm in equation (17).

Finally, from equation (14) and the damage equation of flooding, we obtain the average
output:

EYm ∝
∑
s

Pr(s)Am(s)Nm(s)
1

σ−1Lm. (B.12)

Taking the log-linearization and full derivation around rm = 0, we obtain:

dÊY m = −δdrm + dL̂m +
1

σ − 1
dÊNm. (B.13)

Therefore, we obtain equation (21).

B.4 Two-sector Model

We now extend the model to consider two sectors—traded and non-traded sectors j ∈
{T,NT}. For each sector in region m, there is a composite good composed of differenti-
ated varieties (firms) sourced from different origins, according to the CES technology,

Y j
m(s) =

(∑
n

∫
Ωjnm(s)

y(v, s)
σ−1
σ dv

) σ
σ−1

(B.14)
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where Ωj
nm(s) is the set of firms that trade from origin n in state s. For the nontradable

sector that does not source from other regions, ΩNT
nm (s) = ∅ ∀ n 6= m. For the traded sector,

the iceberg trade costs from n to m are assumed to be τnm = (distnm)γ ≥ 1 ∀n 6= m and
τnm = 1 ∀n = m, where γ is the elastcity of trade costs with regard to physical distance,
and there are no fixed marketing costs (Krugman, 1980). The free-entry conditions of firms
in both sectors are identical as in Section 6.3.1. Workers in each region consume traded and
non-traded goods with expenditure shares β and (1− β) respectively.

We calibrate β = 0.3 to match the share of employment in the non-traded sector from the
Population Census in 2000.32 We calibrate γ to match the elasticity of good flows with regard
to distance estimated from the Commodity Flow Survey (Allen and Arkolakis, 2014).33 We
recalibrate all internally calibrated parameters following the procedure in Section 5.2.

B.5 Capital and Housing

We now extend the production function in region m to allow for capital and structures
(housing):

ym(s) = Am(s)
[
(ldm(s))β(kdm(s))1−β]1−θ hdm(s)θ (B.15)

where θ is the share of costs spent on housing. The parameters β(1− θ) and (1− β)(1− θ)
are the cost shares of labor and capital in the production, respectively. We also modify the
worker’s utility to incorporate housing:

Um(s) = vmBm(s)

(
cm(s)1−ζhm(s)ζlm − ψm

l
1+1/φL
m

1 + 1/φL

)
,

s.t. Pm(s)cm(s) + Pm,h(s)hm(s) ≤ Wm(s).

(B.16)

where hm(s) is the individual’s demand for housing per unit of labor and Pm,h(s) is the price
per unit of housing. ζ is the share of housing costs in individuals’ expenditures.

We consider that capital can be rented at the real return R from the global market.
We model housing supply following Serrato and Zidar (2016): housing is supplied locally
at an amount Hm(s) = Dm(Pm,h(s))

ψ in each region, whereas the elasticity ψ captures the
32Following Fajgelbaum (2020), the following sectors are included in the non-traded sector: construction,

retailer, hotels and restaurants, real estate, education, health and social work.
33In the traded sector, the elasticity of trade flows with regard to distance is (σ − 1)γ.
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responses of housing supply to housing price. To close the model, we assume that both capital
income and housing income are spent on final goods in the local area. In the recalibration, we
obtain the housing share in the U.S. production θ = 0.06 from Caselli and Coleman (2001)
and β = 2/3 such that the labor share in the total income is roughly two thirds. We consider
ζ = 0.3 for the share of housing costs in individuals’ expenditures. We set ψ = 3.1 according
to Serrato and Zidar (2016)’s estimate and region-specific {Dm} such that the amount of
housing supply in each region is proportional to its land areas in the calibrated economy. We
set R = 0.08 according to the real internal rate of return in the U.S. from the Penn World
Table. We recalibrate all internally calibrated parameters following the procedure in Section
5.2.

B.6 Heterogeneity in Firm Productivity

In our baseline model, we assumed homogeneity among firms in each location. We now
introduce a model extension in which firms exhibit heterogeneous productivity levels, with
smaller firms being more susceptible to flood shocks.

We follow the methods of Melitz (2003) and Chaney (2008) to model the firm sector in
each region. Assuming that a firm entering region m draws an idiosyncratic productivity
z from a Pareto distribution F (z) = 1 − z−θ, we can modify the production function in
equation (5) as follows:

ym(s) = Am(s)z ldm(s). (B.17)

The profits of the firm, as shown in equation (6), can be adjusted as follows (with dependence
on productivity in this instance):

πm(z, s) =
1

σ

(
σ̃
Wm(s)

Am(s)z

)1−σ

Pm(s)σYm(s). (B.18)

Besides entry costs, we assume that firms must also employ f om(s) units of labor to actively
produce in regionm, accounting for some overhead expenses. Specifically, we assume f om(s) =

f̄ om exp(δfξm(s)), where δf > 0 indicates that fixed operational costs can be higher in the
event of a flood. A firm will actively produce if and only if πm(z, s) ≥ f om(s). In contrast
to our baseline model with exogenous exits, this framework implies that only unproductive
(small) firms will discontinue operations due to their reluctance to bear the fixed operational
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costs.

The free entry condition in equation (7) can be adjusted as follows:

∑
s

Pr(s)Wm(s)

[
fm + f om(s)

∫
I{πm(z,s)≥fom(s)}dF (z)

]
=
∑
s

Pr(s)
∫
I{πm(z,s)≥fom(s)}πm(z, s)dF (z).

(B.19)
In this context, I{πm(z,s)≥fom(s)} functions as an indicator variable signifying whether a firm is
actively producing or not. The left-hand side includes the total expected costs for a potential
entrant, consisting of both entry costs and operational costs associated with active operation.
On the other hand, the right-hand side depicts the expected profits generated by a potential
entrant in an actively producing state. At equilibrium, free entry ensures that the total
expected costs are equal to the expected profits for a potential entrant.

In the recalibration process, we assign the shape parameter of the firm productivity
distribution as θ = 4.5, which is a widely accepted value in the literature (Simonovska and
Waugh, 2014). We select f̄ om and δf for each region to ensure that the annual exit rate is
0.08 in every location, and floods lead to a 0.3% increase in exits, aligning with our baseline
calibration. We recalibrate all other internally calibrated parameters following the procedure
in Section 5.2.
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C Quantitative Analyses: Additional Results

C.1 Special Flood Zones and Actual Flood Risk

Figure C.1: Relationship between Annual Share of Flooding Areas and Share of Special
Flood Zones, across Counties

(a) Relationship in 1998 (b) Relationship in 2018
Notes: We group counties into 20 bins (fewer for 1998 due to a lot of zeros) ranked by the share of land in flood zones.

C.2 Additional Tables

Table C.1: Targeted Moments in the Data and Model

Targeted Moments Data Model Corr.

Regional real GDP (national total normalized to 1) 4e-4 (2e-3) 4e-4 (2e-3) 1.00
Regional population (national total normalized to 1) 4e-4 (1e-3) 4e-4 (1e-3) 1.00
Regional employment-to-population ratio 0.45 (0.20) 0.45 (0.20) 1.00
Regional firm count (national total normalized to 1) 4e-4 (1e-3) 4e-4 (1e-3) 1.00

Notes: For each moment, we present the averages across all counties using the actual data and the model-
generated data. The standard deviations are in parentheses. The last column presents the cross-county corre-
lation between actual moments and model-generated moments.
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